3,565 research outputs found

    Low-TT Phononic Thermal Conductivity in Superconductors with Line Nodes

    Full text link
    The phonon contribution to the thermal conductivity at low temperature in superconductors with line nodes is calculated assuming that scattering by both nodal quasiparticles and the sample boundaries is significant. It is determined that, within the regime in which the quasiparticles are in the universal limit and the phonon attenuation is in the hydrodynamic limit, there exists a wide temperature range over which the phonon thermal conductivity varies as T2T^2. This behaviour comes from the fact that transverse phonons propagating along certain directions do not interact with nodal quasiparticles and is thus found to be required by the symmetry of the crystal and the superconducting gap, independent of the model used for the electron-phonon interaction. The T2T^2-dependence of the phonon thermal conductivity occurs over a well-defined intermediate temperature range: at higher TT the temperature-dependence is found to be linear while at lower TT the usual T3T^3 (boundary-limited) behaviour is recovered. Results are compared to recent measurements of the thermal conductivity of Tl2201, and are shown to be consistent with the data.Comment: 4 page

    Multidimensional Pattern Formation Has an Infinite Number of Constants of Motion

    Full text link
    Extending our previous work on 2D growth for the Laplace equation we study here {\it multidimensional} growth for {\it arbitrary elliptic} equations, describing inhomogeneous and anisotropic pattern formations processes. We find that these nonlinear processes are governed by an infinite number of conservation laws. Moreover, in many cases {\it all dynamics of the interface can be reduced to the linear time--dependence of only one ``moment" M0M_0} which corresponds to the changing volume while {\it all higher moments, MlM_l, are constant in time. These moments have a purely geometrical nature}, and thus carry information about the moving shape. These conserved quantities (eqs.~(7) and (8) of this article) are interpreted as coefficients of the multipole expansion of the Newtonian potential created by the mass uniformly occupying the domain enclosing the moving interface. Thus the question of how to recover the moving shape using these conserved quantities is reduced to the classical inverse potential problem of reconstructing the shape of a body from its exterior gravitational potential. Our results also suggest the possibility of controlling a moving interface by appropriate varying the location and strength of sources and sinks.Comment: CYCLER Paper 93feb00

    Classical phase fluctuations in d-wave superconductors

    Full text link
    We study the effects of low-energy nodal quasiparticles on the classical phase fluctuations in a two-dimensional d-wave superconductor. The singularities of the phase-only action at T\to 0 are removed in the presence of disorder, which justifies using an extended classical XY-model to describe phase fluctuations at low temperatures.Comment: 14 pages, brief review for Mod. Phys. Lett.

    Superconductivity in ferromagnetic metals and in compounds without inversion centre

    Full text link
    The symmetry properties and the general overview of the superconductivity theory in the itinerant ferromagnets and in materials without space parity are presented. The basic notions of unconventional superconductivity are introduced in broad context of multiband superconductivity which is inherent property of ferromagnetic metals or metals without centre of inversion.Comment: 38 pages, no figure

    Charged-Surface Instability Development in Liquid Helium; Exact Solutions

    Get PDF
    The nonlinear dynamics of charged-surface instability development was investigated for liquid helium far above the critical point. It is found that, if the surface charge completely screens the field above the surface, the equations of three-dimensional (3D) potential motion of a fluid are reduced to the well-known equations describing the 3D Laplacian growth process. The integrability of these equations in 2D geometry allows the analytic description of the free-surface evolution up to the formation of cuspidal singularities at the surface.Comment: latex, 5 pages, no figure

    A note on the extension of the polar decomposition for the multidimensional Burgers equation

    Full text link
    It is shown that the generalizations to more than one space dimension of the pole decomposition for the Burgers equation with finite viscosity and no force are of the form u = -2 viscosity grad log P, where the P's are explicitly known algebraic (or trigonometric) polynomials in the space variables with polynomial (or exponential) dependence on time. Such solutions have polar singularities on complex algebraic varieties.Comment: 3 pages; minor formatting and typos corrected. Submitted to Phys. Rev. E (Rapid Comm.

    Integrable Structure of Interface Dynamics

    Full text link
    We establish the equivalence of a 2D contour dynamics to the dispersionless limit of the integrable Toda hierarchy constrained by a string equation. Remarkably, the same hierarchy underlies 2D quantum gravity.Comment: 5 pages, no figures, submitted to Phys. Rev. Lett, typos correcte

    Viscous fingering and a shape of an electronic droplet in the Quantum Hall regime

    Full text link
    We show that the semiclassical dynamics of an electronic droplet confined in the plane in a quantizing inhomogeneous magnetic field in the regime when the electrostatic interaction is negligible is similar to viscous (Saffman-Taylor) fingering on the interface between two fluids with different viscosities confined in a Hele-Shaw cell. Both phenomena are described by the same equations with scales differing by a factor of up to 10−910^{-9}. We also report the quasiclassical wave function of the droplet in an inhomogeneous magnetic field.Comment: 4 pages, 1 eps figure include

    NMR relaxation time in a clean two-band superconductor

    Full text link
    We study the spin-lattice relaxation rate of nuclear magnetic resonance in a two-band superconductor. Both conventional and unconventional pairing symmetries for an arbitrary band structure in the clean limit are considered. The importance of the inter-band interference effects is emphasized. The calculations in the conventional case with two isotropic gaps are performed using a two-band generalization of Eliashberg theory.Comment: 9 pages, 3 figure

    Gap structure in noncentrosymmetric superconductors

    Full text link
    Gap structure in noncentrosymmetric superconductors with spin-orbit band splitting is studied using a microscopic model of pairing mediated by phonons and/or spin fluctuations. The general form of pairing interaction in the band representation is derived, which includes both the intraband and interband pairing terms. In the case of isotropic interaction (in particular, for a BCS-contact interaction), the interband pairing terms vanish identically at any magnitude of the band splitting. The effects of pairing interaction anisotropy are analyzed in detail for a metal of cubic symmetry with strong spin-orbit coupling. It is shown that if phonons are dominant then the gaps in two bands are isotropic, nodeless, and have in general different amplitudes. Applications to the Li_2(Pd_{1-x},Pt_x)_3B family of noncentrosymmetric superconductors are discussed.Comment: 9 pages; minor corrections, published versio
    • …
    corecore